# Reducing Global Emissions of Methane The Other Key Greenhouse Gas

# **Robert N. Stavins**

A. J. Meyer Professor of Energy and Economic Development, Harvard Kennedy School

Director, Harvard Environmental Economics Program

Director, Harvard Project on Climate Agreement

Principal Investigator, Harvard Initiative on Reducing Global Methane Emissions

# Why Focus on Reducing Global Methane Emissions?

- Methane has received much less attention than carbon dioxide  $(CO_2)$  as a driver of climate change
  - Absolute quantities of anthropogenic methane (CH<sub>4</sub>) emissions are *much less* than those of CO<sub>2</sub>
  - And the half-life of CO<sub>2</sub> in the atmosphere exceeds 100 years, but CH<sub>4</sub> atmospheric lifetime is only about 12 years
- However, methane has very high global warming potential per unit, compared with CO<sub>2</sub>
  - Over 100 years, each methane unit is 28 times as effective in radiative forcing
  - And over 20 years, its 84 times as effective!
  - Historically, methane is responsible for about 30% of global warming since the industrial revolution
- So, methane-emissions abatement can significantly reduce GHG concentrations, climate change, and damages ... particularly in the *short term*!
- This can give the world time to:
  - "bend the curve" on CO<sub>2</sub> emissions
  - conduct research on carbon mitigation and removal
  - *implement* longer-term strategies to mitigate and adapt to climate change

# Harvard Initiative on Reducing Global Methane Emissions

- In 2023, we launched a Harvard-wide "Initiative on Reducing Global Methane Emissions"
  - Sponsored by Harvard's Salata Institute on Climate and Sustainability
- Goal is to achieve meaningful and sustained progress in methane emissions reductions ...
  - ... through research and effective engagement with key stakeholders ...
  - ... to deliver information facilitating design & implementation of emission-reduction policies & programs
- This presentation:
  - Provides an overview of the Initiative (which I'm directing)
  - Briefly describes the specific Research Projects of the Initiative



# Harvard Initiative on Reducing Global Methane Emissions (continued)

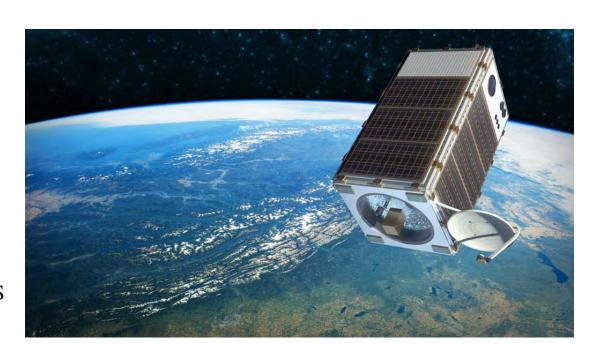
- Brings together two dozen researchers, including Harvard faculty from across university plus external collaborators
  - Seven departments in FAS from Sciences, Social Sciences, and Humanities
  - Five professional schools: Business, Engineering, Government, Law, and Public Health
  - Disciplines: physics, chemistry, biology, engineering, economics, political science, law, business, and history
  - By collaborating across research teams, *the whole can be greater than sum of its parts*: frequent interaction among researchers; building on synergies; advancing cross-disciplinary understanding
- We're working to translate research into useful materials
  - Preparing written *briefs* and *videos*; and meetings with government, NGO, and business leaders
- Overall theme: seeking to translate science into action
  - Engaging in *two-way communication* with government, business, NGOs, and international organizations
  - This includes governments and stakeholders at the international, regional, national, and sub-national levels
- In first year (of three-year initiative), we launched seven projects ...

# Satellite Observations of Atmospheric Methane for U.S. Reporting Needs

#### • Goal:

 Increase value of satellite observations of atmospheric methane for reporting & regulation of methane emissions in the United States

## • Specifically:


- Improve *reporting* of methane emissions from landfills under U.S. EPA's Greenhouse Gas Reporting Program
- Develop a near-real-time satellite-based monitoring system for verification of emission reductions and quantification of methane intensities (using Tropospheric Monitoring Instrument – TROPOMI – and MethaneSAT)

#### • Leaders:

- Daniel Jacob Department of Earth and Planetary Sciences, FAS
- Carrie Jenks Harvard Law School

# Activity & Progress:

- Convened group of scientists & advocates on Jan. 18, 2024, to address landfills (see above); identify and implement steps to support revision of landfill performance standards under Clean Air Act Section 111
- Development of real-time monitoring



# **Estimating Economic Costs of Reducing Methane Emissions**

#### • Goal:

• Apply *empirical methods* to improve cost estimates, and identify *policy instruments* to reduce abatement costs

## • Specifically:

• Review literature on three types of cost estimates: *engineering cost* estimates; *econometrically estimated* costs; and costs *revealed* through public policies

#### • Leaders:

- Joseph Aldy Harvard Kennedy School
- Forest Reinhardt Harvard Business School
- Robert Stavins Harvard Kennedy School

## Activity & Progress:

- Limiting warming to 1.5°C at the lowest cost

  By 2030

  methane emissions need to be reduced in each of the three main emitting sectors:

  Fossil Fuels Waste Agriculture

  30% 20% 25%
  - Reductions relative to 2020 emissions

.

CCAC. All rights reserved

- Release working paper and policy brief in early in of 2025 that surveys and synthesizes abatement cost estimates in O&G sector
- Second Year: original econometric estimates of abatement costs, w/data on O&G fugitive methane emissions, technologies, oil & gas production and prices, etc.

# **Methane & Markets: Firm Incentives to Emit**

#### • Goal:

• Explore economic factors that influence firms' decisions to emit methane rather than sell additional natural gas

## • Specifically:

 Analyze firm production and emissions decisions in response to oil & gas prices, and costs of capturing & transporting gas

#### • Leaders:

- *Coly Elhai* Department of Economics (PhD student)
- *Toren Fronsdal* Department of Economics (PhD student)

#### • Activity & Progress:

- Launched analysis of effects of oil & gas prices on production & emissions decisions
- With new data, executing more robust empirical analysis
- Undertaking research trip to Permian Basin for first-hand observation of O&G companies' operations
- Exploring pipeline investment to understand why capacity has not kept up with demand



# **Arctic Methane Emissions and Climate Mitigation**

#### • Goal:

• Estimate the *economic value* of narrowing uncertainty about future methane emissions from thawing permafrost

## • Specifically:

- Work draws in part on findings from ongoing work on monitoring & modeling emissions from permafrost thaw,
- ... both at the Salata Institute and in the Harvard component of TED/Audacious-funded Permafrost Pathways Project

#### • Leaders:

- James Hammitt Harvard T.H. Chan School of Public Health
- *John Holdren* Harvard Kennedy School

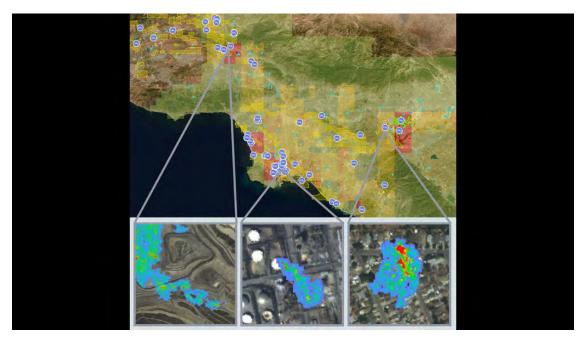
# • Activity & Progress

- Developed theoretical model of value of additional information
- Calibrating model with IPCC estimates of emissions of CO<sub>2</sub>
   and CH<sub>4</sub> from thawing permafrost



# Using Remote Sensing Data to Inform Micro-Histories of Release Sites

#### • Goal:


■ Better assess methane super-emitter sites, and understand more about the *social context* of methane emissions reductions – as a means to more effectively reduce emissions.

## • Specifically:

- Juxtapose *micro-histories* of methane emissions sites with satellite and aircraft imaging.
- Develop new approaches to mapping those emissions.

#### • Leaders:

- *Emma Rothschild* Department of History, FAS
- Steven Wofsy Harvard John A. Paulson School of Engineering and Applied Science



# • Activity & Progress:

- First round of MethaneAIR data-gathering complete (domestic U.S.).
- Research workshop to be held in fall 2024.

# **Methane and Trade**

#### • Goal:

 Develop and disseminate proposal for a Methane Border Adjustment Mechanism (MBAM) that can enhance ambition and activities by countries

## • Specifically:

 Based on proposal for a U.S.-EU MBAM by Kim Clausing, Luis Garicano, & Catherine Wolfram, develop user-friendly materials, and plan & execute engagements with policy makers

#### • Leaders:

- Catherine Wolfram Sloan School of Management, MIT
- *Kim Clausing* School of Law, UCLA

## • Activity & Progress:

- Produced a Research Brief summarizing proposal and next steps
- Organized workshops and other engagements in Washington, D.C., planning underway for Brussels and Beijing (Climate & Trade)



# **International Cooperation to Reduce Methane Emissions**

#### • Goal:

• Characterize *complex landscape* of international cooperation to reduce methane emissions; develop *recommendations* for further cooperation

## • Specifically:

- Examine how *large-emitting countries*, including China, might advance efforts to abate, in part through international cooperation
- Address interaction of trade policy and efforts to reduce methane emissions

#### • Leaders:

- *Robert Stavins* Harvard Kennedy School
- *Robert Stowe* Harvard Project on Climate Agreements

## Activity & Progress:

- Produce a paper (Spring 2025), describing & assessing complex landscape of international cooperation to reduce methane emissions, including: Paris Agreement NDCs; Global Methane Pledge; industry consortia, pledges, & mechanisms; and NGO partnerships
- Begin to prepare proposals to enhance cooperation



# Fourteen Additional Projects in Year 2 of the Initiative

# The Harvard Methane Initiative, in its second year (began July 2024):

- Launching 14 new projects
- Extending research beyond the oil and gas sector to address sources in agriculture and landfills
- Extending research outside of the USA
- Supporting more doctoral students and postdoctoral researchers

## **New Research/Outreach Projects:**

# • Agriculture:

- Intelligent Nature-Inspired Olfactory Sensors Engineered to Sniff (iNOSES) for Real-Time Methane Monitoring
- Policy for and Regulation of Agricultural Methane Emissions in the United States
- Methane Abatement in Livestock: Making Markets for Feed Additives in the Global North and Global South
- Methane Mitigation from Dry Cultivation of Rice in China

#### • Waste/Landfills

Improved GHGRP Reporting and Reduction of Emissions from US Landfills

# Fourteen Additional Projects in Year 2 (continued)

## • Additional Projects Addressing Emissions from the Oil and Gas Sector

- The Market and Climate Implications of U.S. LNG Exports
- Econometric Estimation of Methane Abatement Costs
- High-frequency Variability of Emissions from U.S. Oil & Gas Production Regions
- Policy Options for Reducing Methane Emissions
- Global Climate Impacts of U.S. LNG Exports
- Establishing the Representativeness of Remote-Sensing Observations of Methane Point Sources
- Coordinating with Industry on Emissions Monitoring
- Regulatory Obstacles & Opportunities for Well-Capping in Pennsylvania

## • Cutting Across Sources and Sectors:

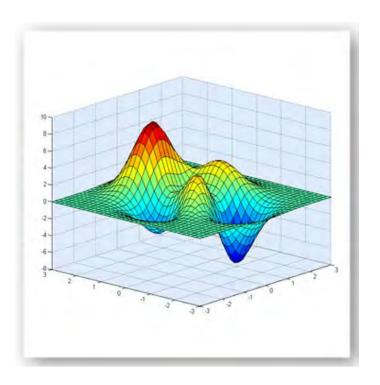
Integrated Methane Inversion Training for Stakeholders

# **Econometric Estimation of Methane Abatement Costs**

#### • Goal:

Develop and apply empirical framework for estimating costs of reducing methane emissions

## • Specifically:


- Focus on U.S. O&G sector to examine market incentives (natural gas prices) and policy incentives (state & federal regulations) to reduce emissions
- Produce both short-run and long-run methane abatement supply functions
- Use TROPOMI, MethaneSAT, MethaneAIR emission estimates (time & space)

#### • Leaders:

- *Joseph Aldy* Harvard Kennedy School
- Forest Reinhardt Harvard Business School
- *Robert Stavins* Harvard Kennedy School

## Activity & Progress:

- Obtaining data on natural gas nodal prices, O&G fugitive methane emissions, production levels and technologies
- Working with Daniel Jacob re Integrated Methane Inversion tool; in contact with EDF re MethaneSAT data



# **Intelligent Nature-Inspired Olfactory Sensors Engineered to Sniff** (iNOSES) for Real-Time Methane Monitoring

#### Goal:

 Develop and deploy an intelligent, accurate, wearable, nature-inspired olfactory sensor for real-time methane monitoring of livestock (primarily cattle) methane emissions

## • Specifically:

- Design, print, and test printed circuit boards to form the hardware foundation of iNOSES
- Field test device
- Improve device based on field testing

#### Leaders:

- Joanna Aizenberg, Materials Science and Chemistry & Chemical Biology (with Postdoc Anna Shneidman and PhD student Haritosh Patel).
- Venkatesh Murthy, Molecular and Cellular Biology

## Activity & Progress:

Designing hardware for the device



# Regulation of Agricultural Methane Emissions in the United States

#### • Goal:

Identify, describe, and evaluate key regulations addressing agricultural methane emissions in the United States

## • Specifically:

- Produce a research brief on this topic, to be released by the Harvard Methane Initiative.
- Summarize and assess existing regulatory frameworks, primarily state level, for livestock

#### • Leaders:

- Abby Husselbee, Harvard Law School
- Carrie Jenks, Harvard Law School

## Activity & Progress:

Research underway, brief will be delivered in December 2024.



# Methane Abatement in Livestock: Markets for Feed Additives in the Global North and Global South

#### • Goal:

• Elaborate on policy environment needed to speed uptake of feed additives to reduce methane emissions in dairy and beef cattle, comparing the Global North with the Global South

## • Specifically:

- Focus on Bovaer as case study, due to regulatory approval in 65 countries, including USA and EU
- Examine challenges to adoption of Bovaer in Global South
- In-person interviews
- Produce a paper presenting results.

#### • Leaders:

• Robert Paarlberg, Harvard Weatherhead Center for International Affairs

## • Activity & Progress:

Research underway, paper will be delivered in late spring 2025



# Methane Mitigation from Dry Cultivation of Rice in China

#### • Goal:

• Using econometric methods, estimate the impact on reduction of methane emissions in China by substituting dry cultivation of rice for paddy rice production

## • Specifically:

- Using data from Landsat, GOSAT, and TROPOMI, examine the degree to which dry cultivation reduces methane emissions
- Examine side effects, including on yield, agricultural revenue, and water use
- What is the return to government's subsidy for dry cultivation, including as a climate mitigation strategy in terms of \$/avoided CO<sub>2</sub>e emission?

#### • Leaders:

- Xinming Du, Salata Institute for Climate and Sustainability, on sabbatical leave, National University of Singapore
- *Charles Taylor*, Harvard Kennedy School (advisory role)

#### • Activity & Progress:

• Research is underway; paper to be delivered in late summer 2025



# Improved Reporting and Reduction of Emissions from U.S. Landfills

#### Goal:

• Based on data from the TROPOMI satellite, analyze methane-emission trends for individual landfills

#### • Specifically:

- Using newly-developed 12x12 km inversion capability to isolate urban landfills
- Input to U.S. Greenhouse Gas Reporting Program (GHGRP)

#### • Leaders:

- Carrie Jenks, Harvard Law School
- Daniel Jacob, Department of Earth and Planetary Sciences

# Activity & Progress:

Research is underway



# The Market and Climate Implications of U.S. LNG Exports

#### • Goal:

Quantify the economic consequences and climate implications of U.S. exports of liquified natural gas

## • Specifically:

 Examine how U.S. role as world's largest LNG exporter (2015-2023) reconnected U.S. gas prices to world O&G market prices

Analyze effect on domestic gas prices and coal prices in terms of equivalent carbon taxes, and consequent

power sector CO<sub>2</sub> emissions reductions

#### Leaders:

- *James Stock*, Department of Economics
- Matthew Zaragoza-Watkins, University of California, Davis

# • Activity & Progress:

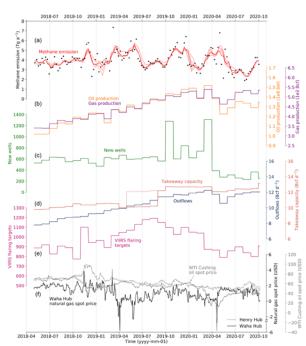
 Working paper (#32228, NBER, March 2024) completed; further work on climate impacts to consider life-cycle emissions associated with LNG exports, including methane leaks

# High-Frequency Emissions Variability in US Oil & Gas Production

#### • Goal:

Examine implications O&G production of variability for developing policy to reduce methane emissions

## • Specifically:


- Quantify emissions from source regions with weekly resolution from TROPOMI data
- Assess consequences in terms of economic indicators and implications for developing policy to reduce emissions.

#### • Leaders:

- *Coly Elhai*, Department of Economics (PhD student)
- Daniel Jacob, Department of Earth and Planetary Sciences
- Daniel Varon, Department of Earth and Planetary Sciences (Postdoc)

## Activity & Progress:

Research is underway



# **Policy Options for Reducing Methane Emissions**

#### • Goal:

 Based on research from first year, explore how natural-gas producers may react to a range of policy options targeting midstream congestion and changes in natural gas prices

## • Specifically:

- Assess effectiveness of flaring restrictions, given limited enforcement capacity
- Consider how different types of tax policies may affect emissions
- Examine the emissions impact of policies focused on pipelines
- Consider the challenge of enforcement throughout

#### • Leaders:

- Coly Elhai, Department of Economics (PhD student)
- *Toren Fronsdal*, Department of Economics (PhD student)

## • Activity & Progress:

Research is underway.



# Global Climate Impacts of U.S. LNG Exports

#### Goal:

■ Build a quantitative model of global energy markets and electricity investment that can be used to assess the global climate implications of future U.S. LNG capacity expansion

## • Specifically:

- Develop dynamic model of global electricity investment, to be combined with a global trade model, where both natural gas and coal prices respond to global demand and supply shocks
- Estimate model using plant-level data on global electricity generation assets and specialized energy trade infrastructure, complemented by existing estimates of upstream and midstream methane emission intensity
- Quantify how changes in global energy trade infrastructure affect carbon emissions

#### • Leaders:

• Constanza Abuin, Department of Economics (PhD student)

#### • Activity & Progress:

Research is underway

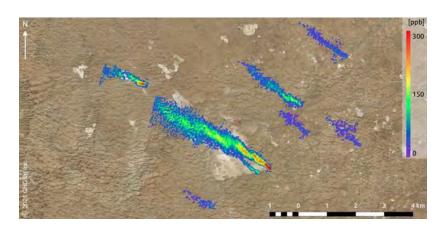


# **Examining the Representativeness of Remote-Sensing Observations of Methane Point Sources**

#### • Goal:

 Resolve difficulty in interpreting methane point source observations from aircraft and satellites in regard to representative emissions

## • Specifically:


- Account for source intermittency, observing precision, and observation repeat time.
- Will contribute to the Integrated Methane Inversion (IMI) tool developed by the Harvard SEAS/EPS
   Atmospheric Chemistry Modeling Group to quantify methane emissions with high resolution

#### • Leaders:

- Harshil Kamdar, Harvard Salata Institute; Lead Senior Scientist, Insight M
- Daniel Jacob, Department of Earth and Planetary Sciences

## Activity & Progress:

Research is underway.



# **Coordinating with Industry on Emissions Monitoring**

#### • Goal:

 Develop modes of collaboration with O&G industry in Appalachian region to develop reproducible steps for detecting and mitigating methane emissions

## • Specifically:

- Notify companies of emissions detected in remote sensing observations by the project team using MethaneAIR
- Compare these data to data from the Appalachian Methane Initiative on suspected locations of emissions
- Determine whether the validated data are sufficiently robust to use for reporting to EPA. and use validated data to identify ongoing leaks and choose effective monitoring locations and cadences

#### • Leaders:

- Ethan Kyzivat, Department of Earth and Planetary Sciences (Postdoc)
- With advice and support from *Dustin Tingley*, Department of Government,
- ... and Steven Wofsy, Department of Earth and Planetary Science

# • Activity & Progress:

Research and outreach activities will begin in early spring 2025



# Regulatory Obstacles & Opportunities for Well-Capping in Pennsylvania

#### • Goal:

Convene major *stakeholders* in western Pennsylvania to examine ways to *address regulatory & economic obstacles* to capping natural gas wells that are no longer producing

## • Specifically:

 Develop blueprint for regulatory & legislative action by convening regulators, legislators, well owners/operators, land owners, community leaders, & experts in well-capping

#### • Leaders:

- Stephen Ansolabehere Department of Government
- Carrie Jenks Harvard Law School
- *Dustin Tingley* Department of Government

## Activity & Progress:

- Two-day workshop planned
- Stakeholders, researchers, including Harvard faculty & staff



# **Integrated Methane Inversion Training for Stakeholders**

#### • Goal:

Execute (remote) workshops to enable users to infer methane emissions from satellite data

## • Specifically:

- User-friendly, open-code Integrated Methane Inversion (IMI) tool on Amazon Web Services (AWS) will enable stakeholders with no prior expertise to conduct inversions, visualization, and processing of satellite data
- Half-day workshops to be offered separately for Americas, Europe/Africa, and Asia; Each workshop to include: (1) overview of IMI; (2) tutorial on using IMI; (3) hands-on application by all participants to a common region; and (4) hands-on application by each participant to their region of interest

#### • Leaders:

- *Daniel Jacob* Department of Earth and Planetary Sciences
- *Daniel Varon* Department of Earth and Planetary Sciences

## • Activity & Progress

In preparation; to begin in November of 2024



# Other Participating Faculty and External Collaborators

#### Other Participating Faculty

- Jody Freeman Harvard Law School
- Meghan O'Sullivan Harvard Kennedy School
- *Michael Toffel* Harvard Business School
- Mark Brownstein Environmental Defense Fund
- Nathaniel Hendren Department of Economics, MIT

## Collaborating Institutions (partial list)

- Clean Air Task Force
- Climate and Clean Air Coalition
- Environmental Defense Fund
- Office of the U.S. Special Presidential Envoy for Climate, U.S. Department of State
- Oil & Gas Climate Initiative
- Resources for the Future
- U.N Environment Programme
- World Bank Group

# Thank You!

# **For More Information**

# Harvard Project on Climate Agreements

www.belfercenter.org/climate

# Harvard Environmental Economics Program

www.hks.harvard.edu/m-rcbg/heep

# Website

www.stavins.com

# Blog

http://www.robertstavinsblog.org/

# BlueSky

@robertstavins.bsky.social

# Salata Institute Initiative on Reducing Global Methane Emissions

https://salatainstitute.harvard.edu/projects/methane/